Nanopharmaceuticals: In Relevance to Drug Delivery and Targeting

  • Md Akhlaquer Rahman
  • Mohammad Yusuf
  • Thamir Alshammari
  • Md Faiyazuddin
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 47)


a budding concern in nanopharmaceuticals has generated a number of advancements throughout recent years with a focus on commercialization and engineering novel products. the integration of nanotechnology into medical field has given birth to some new interdisciplinary areas of nanomedicine including nanopharmaceuticals. this is relatively a new class of therapeutic-containing nanomaterials that often have unique nanoproperties including small particle size, high surface-to-volume ratio, ability to improve solubility, multi-functionality, and the possibility of modulating their properties. nanopharmaceuticals in delivery systems provide new opportunities for solving issues associated with problematic drugs; those were previously unsuitable for conventional oral or injectable formulations could now be formulated and designed to interact with the body at subcellular (i.e., molecular) scales with a high degree of specificity. due to superior pharmacokinetics/pharmacodynamics and/or active intracellular delivery with reduced toxicity and enhanced bioavailability, this created great expectations in the field of drug delivery. with these advantages, nanopharmaceuticals have the ability to extend the economic life of proprietary drugs, thereby creating additional revenue streams. this chapter focuses on the potential application of nanopharmaceuticals including carbon nanotubes, quantum dots, dendrimers, nanoshells, niosomes, magnetic nanoparticles, polymeric nps, and lipid nps in drug delivery and drug targeting. this chapter also includes some of the fda-approved nanopharmaceuticals meant for various routes of administration.


Nanopharmaceuticals Nanomedicine Nanoparticulate Drug delivery Drug targeting Carbon nanotubes Dendrimers Quantum dots 


  1. Ahmad U, Hussain MT, Faiyazuddin M (2015a) Nanotechnology based chemopreventive approaches to improve the oral delivery of Silymarin in liver cancer. In: Bhoop BS, Sharma A, Mehta SK, Tripathi SK (eds) Nanotechnology: novel perspectives & prospects. Tata McGraw Hill Education, New York, pp 809–817. ISBN: 978-93-39221-09-6
  2. Ahmad U, Faiyazuddin M, Hussain MT, Ahmad S, Alshammari TM, Shakeel F (2015b) Silymarin: an insight to its formulation and analytical prospects. Acta Physiol Plant 37(11):253
  3. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35:446–450
  4. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822
  5. Allen TM, Everest JM (1983) Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats. J Pharmacol Exp Ther 226:539–544
  6. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1990) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36
  7. Andersen MO, Lichawska A, Arpanaei A, Rask Jensen SM, Kaur H, Oupicky D (2010) Surface functionalization of PLGA nanoparticles for gene silencing. Biomaterials 31:5671–5677
  8. Azmin M, Florence A, Handjani-Vila R, Stuart J, Vanlerberghe G, Whittaker J (1985) The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmocol 37(4):237–242
  9. Bai S, Thomas C, Ahsan F (2007) Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low molecular weight heparin. J Pharm Sci 96(8):2090–2106
  10. Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Phys E 25:1–12
  11. Barbara K, Maria B (2001) Dendrimers: properties and application. Acta Biochim Pol 48(1):199–208
  12. Bayindir ZS, Yuksel N (2010) Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 99(4):2049–2060
  13. Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA (2009) Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 4:1–7
  14. Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release 123:219–227
  15. Blanco MD, Alonso MJ (1997) Development and characterization of protein loaded poly-lactide-co-glycolide nanospheres. Eur J Pharm Biopharm 43:287–294
  16. Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128
  17. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651
  18. Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. In: Goldberd ID, Rosen EM (eds) Regulation of angiogenesis. Birkhauser Verlag, Basel, pp 233–269
  19. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436
  20. Chan WC (2006) Bionanotechnology progress and advances. Biol Blood Marrow Transplant 12:87–91
  21. Chauhan AS, Jain NK (2003) Dendrimer mediated transdermal delivery; enhanced bioavailability of indomethacin. J Control Release 96:537–540
  22. Chen HT, Neerman MF, Parrish AR, Simanek EE (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048
  23. Cheng Y (2008) Dendrimers as drug carrier: applications in different routes of drug administration. J Pharm Sci 97:33–36
  24. Cheng MM, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19
  25. Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107:459–466
  26. Davis ME (2006) Nanoparticles for systemic medicines and imaging agents. Nanotechnol Law Bus 3(3):255–261
  27. Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295
  28. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60
  29. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8:2101–2141
  30. Emerich DF (2005) Nanomedicine-prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5:1–5
  31. Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663
  32. Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle based drug delivery and molecular diagnosis. Biomol Eng 23:171–184
  33. Fadel M, Kassab K, Fadeel DA (2010) Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor bearing mice. Lasers Med Sci 25:283–292
  34. Faiyazuddin M, Akhtar N, Akhter J, Suri S, Shakeel F, Shafiq S, Mustafa G (2010) Production, characterization, in vitro and ex vivo studies of babchi oil-encapsulated nanostructured solid lipid carriers produced by a hot aqueous titration method. Die Pharmazie-Int J Pharm Sci 65(5):348–355
  35. Faiyazuddin M, Ahmad N, Khar RK, Bhatnagar A, Ahmad FJ (2012) Stabilized terbutaline submicron drug aerosol for deep lungs deposition: drug assay, pulmonokinetics and biodistribution by UHPLC/ESI-q-TOF-MS method. Int J Pharm 434(1–2):59–69
  36. Faiyazuddin M, Mujahid M, Hussain T, Siddiqui HH, Bhatnagar A, Khar RK, Ahmad FJ (2013) Aerodynamics and deposition effects of inhaled submicron drug aerosol in airway diseases. Recent Patents Inflamm Allergy Drug Discov 1:49–61
  37. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171
  38. Fetterly GJ, Straubinger RM (2003) Pharmacokinetics of paclitaxel containing liposomes in rats. AAPS Pharm Sci 5:E32
  39. Firth JA (2002) Endothelial barriers: from hypothetical pores to membrane proteins. J Anat 200:541–548
  40. Fisher RS, Ho J (2002) Potential new methods for antiepileptic drug delivery. CNS Drugs 16:579–593
  41. Fu BM, Adamson RH, Curry FE (1998) Test of a two-pathway model for small-solute exchange across the capillary wall. Am J Phys 274:H2062–H2073
  42. Geusens B, Strobbe T, Bracke S, Dynoodt P, Sanders N, Van Gele M, Lambert J (2011) Lipid-mediated gene delivery to the skin. Eur J Pharm Sci 43(4):199–211
  43. Gobin AM, O’Neal DP, Halas NJ, Drezek R, West JL (2005) Near infrared laser tissue welding using nanoshells as an exogenous absorber. Lasers Surg Med 37:123–129
  44. Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293:455–463
  45. Harding JA, Engbers CM, Newman MS, Goldstein NI, Zalipsky S (1997) Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta 1327:181–192
  46. Harris JM, Chess RB (2003) Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221
  47. Hawker C (2006) Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules 7(3):649–658
  48. Hoarau D, Delmas P, David S, Roux E, Leroux JC (2004) Novel long circulating lipid nanocapsules. Pharm Res 21:1783–1789
  49. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci 95:4607–4612
  50. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998
  51. Hood E, Gonzalez M, Plaas A, Strom J, Van Auker M (2007) Immunotargeting of nonionic surfactant vesicles to inflammation. Int J Pharm 339(1–2):222–230
  52. Huang YZ, Han G, Wang H, Liang WQ (2005) Cationic niosomes as gene carriers: preparation and cellular uptake in vitro. Pharmazie 60:1747357
  53. Huang Y, Chen J, Chen X, Gao J, Liang W (2008) PEGylated synthetic surfactant vesicles (Niosomes): novel carriers for oligonucleotides. J Mater Sci 19(2):607–614
  54. Iga AM, Robertson JH, Winslet MC, Seifalian AM (2007) Clinical potential of quantum dots. J Biomed Biotechnol 7:76087–76097
  55. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
  56. Jain RK (1998) Delivery of molecular and cellular medicine to solid tumors. J Control Release 53:49–67
  57. Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161
  58. Jain C, Vyas S (1995) Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul 12(4):401–407
  59. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharmacol 2:194–205
  60. Jayagopal A, Russ PK, Haselton FR (2007) Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem 18:1424–1433
  61. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 20:1543–1550
  62. Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of Nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6:3–5
  63. Kherlopian AR, Song T, Duan Q, Neimark MA, Po MJ, Gohagan JK, Laine AF (2008) A review of imaging techniques for system biology. BMC Syst Biol 2:74
  64. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237
  65. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang MQ (2006) Methotrexate- immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792
  66. Kolhe P, Misra E, Kannan RM, Kannan S, Lai ML (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160
  67. Kong M, Park H, Feng C, Hou L, Cheng X, Chen X (2013) Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydr Polym 94(1):634–641
  68. Kostarelos K (2003) Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interf Sci 106:147–168
  69. Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416
  70. Labhasetwar V (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 16:674–680
  71. Liu M, Kono K, Frechet JMJ (1999) Water soluble dendrimer poly (ethylene glycol) star like conjugates as potential drug carrier. J Polym Sci 37(17):3492–3503
  72. Liu M, Kono K, Frechet JMJ (2000) Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release 65:121–131
  73. Lockman PR, Mumper RJ, Khan MA, Allen DD (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 28:1–13
  74. Lubbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95:200–206
  75. Malik A, Chaudhury S, Garg G, Tomar A (2012) Dendrimers: a tool for drug delivery. Adv Biol Res 6(4):165–169
  76. Marcato PD, Duran N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8(5):2216–2229
  77. Matsumura Y, Maeda H (1986) A new concept of macromolecular therapies in cancer chemotherapy: mechanism of tumortropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 6:6387–6392
  78. Matsumura Y, Kimura M, Yamamoto T, Maeda H (1988) Involvement of the kinin-generating cascade in enhanced vascular permeability in tumor tissue. J Cancer Res 79:1327–1334
  79. Medina SH, Mohamed EHES (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157
  80. Medina OP, Kairemo K, Valtanen H, Kangasniemi A, Kaukinen S, Ahonen I (2005) Radionuclide imaging of tumor xenografts in mice using a gelatinase-targeting peptide. Anticancer Res 25:33–42
  81. Metselaar JM, Mastrobattista E, Storm G (2002) Liposomes for intravenous drug targeting: design and applications. Mini Rev Med Chem 2:319–329
  82. Missailidis S, Thomaidou D, Borbas KE, Price MR (2005) Selection of aptamers with high affinity and high specificity against C595, an anti-MUC1 IgG3 monoclonal antibody, for antibody targeting. J Immunol Methods 296:45–62
  83. Mitra A, Mulholland J, Nan A, McNeill E, Ghandehari H, Line BR (2005) Targeting tumor angiogenic vasculature using polymer-RGD conjugates. J Control Release 102:191–201
  84. Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478
  85. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318
  86. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330
  87. Mohammad N, Antony D (2006) Crossing cellular barriers using dendrimer nanotechnologies. Curr Opin Pharmacol 6:522–527
  88. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175
  89. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shibe K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1:399–405
  90. Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical application: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 1:483–496
  91. Nobs L, Buchegger F, Gurny R, Allemann E (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93:1980–1992
  92. Oeffinger BE, Wheatley MA (2004) Development and characterization of a nano-scale contrast agent. Ultrasonics 42:343–347
  93. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419
  94. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Appl Phys 36:R167–R181
  95. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347
  96. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226
  97. Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V (2003) Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles. Int J Pharm 262:1–11
  98. Parthasarathi G, Udupa N, Umadevi P, Pillai G (1994) Niosome encapsulated of vincristine sulfate improved anticancer activity with reduced toxicity in mice. J Drug Target 2(2):173–182
  99. Pene F, Courtine E, Cariou A, Mira JP (2009) Toward theragnostics. Crit Care Med 37:S50–S58
  100. Qadir A, Faiyazuddin M, Hussain MT, Alshammari TM, Shakeel F (2016) Critical steps and energetics involved in a successful development of a stable nanoemulsion. J Mol Liq 214:7–18
  101. Raja N, Udupa N, Uma D (1996) Effect of macrophage activation on niosome encapsulated bleomycin in tumor bearing mice. Indian J Pharm 28(3):175–180
  102. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine-challenge and perspectives. Angew Chem Int 48:872–897
  103. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120
  104. Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31
  105. Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42:439–462
  106. Schulze K, Koch A, Schopf B, Petri A, Steitz B, Chastellain M, Hofmann M, Hofmann H, von Rechenberg B (2005) Intra-articular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep. J Magn Magn Mater 293:419–432
  107. Sershen SR, Westcott SL, West JL, Halas NJ (2001) An optomechanical nanoshell-polymer composite. Appl Phys B Lasers Opt 73:379–381
  108. Sershen SR, Westcott SL, Halas NJ, West JL (2002) Independent optically addressable nanoparticle-polymer optomechanical composites. Appl Phys Lett 80:4609
  109. Shaffer C (2005) Nanomedicine transforms drug delivery. Drug Discov Today 10:1581–1582
  110. Shetty A, Elliott AM, Schwartz JA, Wang J, Esparza-Coss E, Klumpp S, Taylor B, Hazle JD, Stafford RJ (2008) Use of gold nanoshells to mediate heating induced perfusion changes in prostate tumors. Proc SPIE 6842:68420S
  111. Shi Kam NW, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851
  112. Smith AM, Duan H, Rhyner MN, Ruan G, Nie S (2006) A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8:3895–3903
  113. Song XR, Cai Z, Zheng Y, He G, Cui FY, Gong DQ (2009) Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 37:300–305
  114. Sonke S, Tomalia DA (2005) Dendrimers in biomedical applications reflections on the field. Adv Drug Deliv Rev 57:2106–2129
  115. Sun H, Dai H, Shaik N, Elmquist WF (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55:83–105
  116. Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anti-Cancer Drugs 22:949–962
  117. Tavano L, Vivacqua M, Carito V, Muzzalupo R, Caroleo MC, Nicoletta F (2013) Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids Surf B 102:803–807
  118. Torchilin VP (2005) Lipid-core micelles for targeted drug delivery. Curr Drug Deliv 2(4):319–327
  119. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555
  120. Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 5:155
  121. Uner M, Wissing SA, Yener G, Muller RH (2004) Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations. Pharmazie 59:331–332
  122. Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P (2003) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93:151–160
  123. Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58:97–110
  124. Wang J, Tao X, Zhang Y, Wei D, Ren Y (2010) Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles. Biomaterials 31:4426–4433
  125. West JL, Halas NJ (2000) Applications of nanotechnology to biotechnology commentary. Curr Opin Biotechnol 11:215–217
  126. Widder K, Flouret G, Senyei A (1979) Magnetic microspheres: synthesis of a novel parenteral drug carrier. J Pharm 68(1):79–82
  127. Willis M, Forssen E (1998) Ligand-targeted liposomes. Adv Drug Deliv Rev 29:249–271
  128. Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272
  129. Woodle MC (1993) Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids 64:249–262
  130. Wu J, Akaike T, Maeda H (1998) Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res 58:159–165
  131. Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical application. Aust J Biol Sci 17:3–19
  132. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ (1999) Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 59:299–307
  133. Yang J, Lee H, Hyung W, Park SB, Haam S (2006) Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J Microencapsul 23:203–212
  134. Yang H, Li K, Liu Y, Liu Z, Miyoshi H (2009) Poly(D,L-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect. J Nanosci Nanotechnol 9:282–287
  135. Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127:9875–9880
  136. Yu B, Tai HC, Xue W, Lee LJ, Lee RJ (2010a) Receptor-targeted nano-carriers for therapeutic delivery to cancer. Mol Membr Biol 27:286–298
  137. Yu W, Liu C, Liu Y, Zhang N, Xu W (2010b) Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res 27(8):1584–1596
  138. Zara GP, Cavalli R, Bargoni A, Fundaro A, Vighetto D, Gasco MR (2002) Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 10:327–335
  139. Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM (2003) Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 9:465–472

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Md Akhlaquer Rahman
    • 1
  • Mohammad Yusuf
    • 1
  • Thamir Alshammari
    • 2
  • Md Faiyazuddin
    • 3
  1. 1.College of PharmacyTaif UniversityTaifKingdom of Saudi Arabia
  2. 2.Saudi Food and Drug AuthorityRiyadhKingdom of Saudi Arabia
  3. 3.Nano Drug DeliveryMarylandUSA

Personalised recommendations