体育赛事投注记录

advertisement

Nanopharmaceuticals: Healthcare Applications and Safety Evaluations

  • Oluyomi Stephen Adeyemi
  • Chiagoziem Anariochi Otuechere
  • Adewale Adewuyi
  • Oluwakemi Josephine Awakan
  • David Adeiza Otohinoyi
Chapter
  • 14 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 47)

Abstract

the prospects of nanotechnology in enhancing the quality of healthcare delivery cannot be overemphasized. indeed, the advancement in nanotechnology is now a motivation for the increasing and wider acceptance of nanotechnology for applications in healthcare improvement particularly for diagnostic and therapeutic purposes. the use of nanotechnology to enhance the quality of pharmaceutical delivery forms the bulk of the emerging field referred to as the nanopharmaceuticals. this has created an interdisciplinary approach which has the potential of improving pharmaceutical delivery which is among the most promising and exciting innovations in healthcare strategy. as revealed in this chapter, nanopharmaceuticals offers remarkable prospects for improved healthcare delivery by reason of their additional potentials including increased surface area, enhanced solubility, increased oral bioavailability, dosage reduction and ease of attachment to functional groups amongst others. these unique features of nanopharmaceuticals are part of the merits which are conspicuously nonexistent with the conventional/traditional pharmaceuticals. thus, this chapter discusses the nanopharmaceuticals vis-a-vis the applications and safety evaluations.

Keywords

Drug delivery and targeting Nanomedicine Nanomaterials Nanotoxicology Safety assessment 

References

  1. Adeyemi OS, Sulaiman FA (2015) Evaluation of metal nanoparticles for drug delivery systems. J Biomed Res 29(2):145–149.  
  2. Adolphi NL, Huber DL, Bryant HC, Monson TC, Fegan DL, Lim J, Trujillo JE, Tessier TE, Lovato DM, Butler KS, Provencio PP, Hathaway HJ, Majetich SA, Larson RS, Flynn ER (2010) Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry. Phys Med Biol 55(19):5985–6003.  
  3. Agrahari V, Zhang C, Zhang T et al (2014) Hyaluronidase-sensitive nanoparticle templates for triggered release of HIV/AIDS microbicide in vitro. AAPS J 16(2):181–193
  4. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515.  
  5. Ali M, Afzal M, Bhattacharya SM, Ahmad FJ, Dinda AK (2013) Nanopharmaceuticals to target antifilarials: a comprehensive review. Expert Opin Drug Deliv 10(5):665–678.  
  6. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333.  
  7. Amiri H, Saeidi K, Borhani P, Manafirad A, Ghavami M, Zerbi V (2013) Alzheimer’s disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem Neurosci 4(11):1417–1429.  
  8. Amrite AC, Kompella UB (2005) Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 57(12):1555–1563.  
  9. Amrite AC, Edelhauser HF, Singh SR, Kompella UB (2008) Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis 14:150–160
  10. An J, Zhang X, Guo Q, Zhao Y, Wu Z, Li C (2015) Glycopolymer modified magnetic mesoporous silica nanoparticles for MR imaging and targeted drug delivery. Colloids Surf A Physicochem Eng Asp 482:98–108.  
  11. AshaRani PV, Prakash Hande M, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65
  12. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910.  
  13. Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey, nanotechnology. Law & Business 5(2):135–155
  14. Bawa R (2009) Nanopharmaceuticals for drug delivery: a review. Touch Brief 6:122–127
  15. Bawa R (2011) Regulating nanomedicine – can the FDA handle it? Curr Drug Deliv 8(3):227–234.  
  16. Bawarski W, Chidlowsky E, Bharali D, Mousa S (2008) Emerging nanopharmaceuticals. Nanomedicine 4:273–282.  
  17. Berkner S, Schwirn K, Voelker D (2016) Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35(4):780–787.  
  18. Betz U, Camacho N, Gerards M, Stremersch S (2013) Grassroots innovation: a promising innovation paradigm for pharmaceutical companies. Int Ser Quant Mark:119–148.  
  19. Cao C, Sim S (2007) Preparation of highly stable oligo(ethylene glycol) derivatives-functionalized gold nanoparticles and their application in LSPR-based detection of PSA/ACT complex. J Nanosci Nanotechnol 7:3754–3757.  
  20. Caramella CM, Rossi S, Ferrari F, Bonferoni MC, Sandri G (2015) Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Deliv Rev 92:39–52.  
  21. Chan T, Narasimhan C, Xie Y (2013) Evaluating the impact of treatment effectiveness and side effects in prescribing choices. Int Ser Quant Mark:171–187.  
  22. Cho WS, Cho MJ, Jeong J et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24.  
  23. Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH (2014) Cell surface protein glycosylation in cancer. Proteomics 14(4–5):525–546.  
  24. Clarke JR, White NC, Weber JN (2000) HIV compartmentalization: pathogenesis and clinical implications. AIDS Rev 2:15–22
  25. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327
  26. Corfield AP, Berry M (2015) Glycan variation and evolution in the eukaryotes. Trends Biochem Sci 40(7):351–359.  
  27. Das J, Samadder A, Das S, Paul A, Khuda-Bukhsh AR (2016) Nanopharmaceutical approach for enhanced anti-cancer activity of Betulinic acid in lung-cancer treatment via activation of PARP: interaction with DNA as a target: -anti-cancer potential of Nano-betulinic acid in lung Cancer. J Pharmacopuncture 19(1):37–44.  
  28. Destache CJ, Mandal S, Yuan Z et al (2016) Topical tenofovir disoproxil fumarate nanoparticles prevent HIV-1 vaginal transmission in a humanized mouse model. Antimicrob Agents Chemother 60(6):3633–3639
  29. DiMasi J, Grabowski H (2007) The cost of biopharmaceutical R&D: is biotech different? Manag Decis Econ 28:469–479.  
  30. DiMasi J, Hansen R, Grabowski H (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185.  
  31. Ding M, Ding M, Eliashberg J et al (2013a) The pharmaceutical industry: specificity, challenges, and what you can learn from this book. Int Ser Quant Mark:1–18.  
  32. Ding M, Dong S, Eliashberg J, Gopalakrishnan A (2013b) Portfolio management in new drug development. Int Ser Quant Mark:83–118.  
  33. Dong X, Mumper RJ (2010) Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine 5(4):597–615.  
  34. Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J (2017) Nanotechnology in glycomics: applications in diagnostics, therapy, imaging, and separation processes. Med Res Rev 37(3):514–626.  
  35. Dou H, Morehead J, Destache CJ et al (2007) Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology 358(1):148–158.  
  36. Dou H, Grotepas CB, McMillan JM et al (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183(1):661–669.  
  37. Dutta T, Jain NK (2007) Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta 1770(4):681–686.  
  38. Dutta T, Agashe HB, Garg M, Balakrishnan P, Kabra M, Jain NK (2007) Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target 15(1):89–98.  
  39. Emery VC (2001) Progress in understanding cytomegalovirus drug resistance. J Clin Virol 21:223–228.  
  40. Ensign LM, Cone R, Hanes J (2014) Nanoparticle-based drug delivery to the vagina: a review. J Control Release 190:500–514.  
  41. Ferry JL, Craig P, Hexel C et al (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444.  
  42. Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 4:183–200.  
  43. Fu PP, Xia Q, Hwang H-M, Ray PC (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75.  
  44. Gandhi RT, Zheng L, Bosch RJ, Chan ES, Margolis DM, Read S et al (2010) The effect of Raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med 7:e1000321.  
  45. Gaur A, Bhatia AL (2008) Nanopharmaceuticals: an overview. Asian J Exp Sci 22(2):51–62
  46. Gèze A, Chau LT, Choisnard L, Mathieu JP, Marti-Batlle D, Riou L, Putaux JL, Wouessidjewe D (2007) Biodistribution of intravenously administered amphiphilic beta-cyclodextrin nanospheres. Int J Pharm 344(1–2):135–142.  
  47. Goldman E, Zinger A, da Silva D, Yaar Z, Kajal A, Vardi-Oknin D, Goldfeder M, Schroeder JE, Shainsky-Roitman J, Hershkovitz D, Schroeder A (2017) Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology 28:1–13.  
  48. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900
  49. Gradishar WJ, Tjulandin S, Davidson N et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803.  
  50. Gullotti E, Yeo Y (2009) Extracellularly activated Nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6(4):1041–1051.  
  51. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torres dey JL (2014) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17(1):177–185. . Accessed 22 Nov 2017
  52. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In-vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In-vitro 19:975–983
  53. Huynh NT, Passirani C, Saulnier P, Benoit JP (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379(2):201–209.  
  54. Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA (2012) Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 7:4391–4408.  
  55. Jaetao JE, Butler KS, Adolphi NL, Lovato DM, Bryant HC, Rabinowitz I, Winter SS, Tessier TE, Hathaway HJ, Bergemann C, Flynn ER, Larson RS (2009) Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res 69(21):8310–8316.  
  56. Jain KK (2008) Nanomedicine: application of Nanobiotechnology in medical practice. Med Princ Pract 17:89–101.  
  57. Jones LH (2015) Recent advances in the molecular design of synthetic vaccines. Nat Chem 7(12):952–960.  
  58. Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919
  59. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119.  
  60. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Jonathan Karn J, Wenhui Hu W, Khalili K (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6:22555.  
  61. Kappe E (2013) Pharmaceutical lifecycle extension strategies. Int Ser Quant Mark:225–254.  
  62. Kattumuri V, Katti K, Bhaskaran S et al (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341
  63. Katz DF, Gao Y, Kang M (2011) Using modelling to help understand vaginal microbicidefunctionality and create better products. Drug Deliv Transl Res 1:256–227.  
  64. Kaur CD, Nahar M, Jain NK (2008) Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 16(10):798–805.  
  65. Kesavan MP, Kotla NG, Ayyanaar S, Kumar GGV, Rajagopal G, Sivaraman G, Webster TJ, Rajesh J (2018) A theranostic nanocomposite system based on iron oxide-drug nanocages for targeted magnetic field responsive chemotherapy. Nanomedicine S1549-9634(18):30085–30086.  
  66. Khanna I (2012) Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today 17:1088–1102.  
  67. Kiessling F, Mertens ME, Grimm J, Lammers T (2014) Nanoparticles for imaging: top or flop? Radiology 273(1):10–28.  
  68. Kompella UB, Amrite AC, Ravi RP, Durazo SA (2013) Nanomedicines for Back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198.  
  69. Laloy J, Minet V, Alpan L, Mullier F, Beken S, Toussaint O, Lucas S, Dogné J (2014) Impact of silver nanoparticles on Haemolysis, platelet function and coagulation. Nano 1:4
  70. Lammers T, Hennink WE, Storm G (2008) Tumor-targeted nanomedicines: principles and practice. Br J Cancer 99(3):392–397.  
  71. Lang P, Yeow K, Nichols A, Scheer A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5:343–356.  
  72. Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodriguez-Padilla C (2010) PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol 8:15
  73. Liu H, Meagher CK, Moore CP, Phillips TE (2005) M cells in the follicle-associated epithelium of the rabbit conjunctiva preferentially bind and translocate latex beads. Invest Ophthalmol Vis Sci 46(11):4217–4223.  
  74. Mangadlao JD, Wang X, McCleese C, Escamilla M, Ramamurthy G, Wang Z, Govande M, Basilion JP, Burda C (2018) Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 12(4):3714–3725.  
  75. Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, Pottier A (2014) Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat Oncol 9:150.  
  76. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594.  
  77. McQuarrie S, Mercer J, Syme A, Suresh M, Miller G (2004) Preliminary results of nanopharmaceuticals used in the radioimmunotherapy of ovarian cancer. J Pharm Pharm Sci 7(4):29–34
  78. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558.  
  79. Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746–757
  80. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330.  
  81. Moghimi S, Peer D, Langer R (2011) Reshaping the future of Nanopharmaceuticals:ad Iudicium. ACS Nano 5:8454–8458.  
  82. Montana M, Ducros C, Verhaeghe P, Terme T, Vanelle P, Rathelot P (2011) Albumin-bound paclitaxel: the benefit of this new formulation in the treatment of various cancers. J Chemother 23(2):59–66.  
  83. Namdari M, Eatemadi A, Soleimaninejad M, Hammed AT (2017) A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed Pharmacother 87:321–331.  
  84. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627.  
  85. Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD (2017) Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. Int J Nanomedicine:1767–1787
  86. Oberdorster G, Maynard A, Donaldson K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8.  
  87. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Shmid G, Brandhu W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 5:2067–2076
  88. Panessa-Warren BJ, Maye MM, Warren JB, Crosson KM (2009) Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environ Pollut 157(4):1140–1151.  
  89. Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120(1–2):1.  
  90. Park K (2017) The drug delivery field at the inflection point: time to fight its way out of the egg. J Control Release.  
  91. Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB (2015) In vitro/in vivo toxicity evaluation and quantification of Iron oxide nanoparticles. Int J Mol Sci 16:24417–24450.  
  92. Paul S, Mytelka D, Dunwiddie C et al (2010) How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov.  
  93. Pautler M, Brenner S (2010) Nanomedicine: promises and challenges for the future of public health. Int J Nanomed 5:803–809.  
  94. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760.  
  95. Pepic I, Hafner A, Lovric J, Perina Lakos G (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 1005.  
  96. Pernodet N, Fang XH, Sun Y et al (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773
  97. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555.  
  98. Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, Borowski BJ, Jack CR Jr (2002) Molecular targeting of Alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11:315–332.  
  99. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990.  
  100. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(1):1–35.  
  101. Rivera GP, Hühn D, del Mercato LL, Sasse D, Parak WJ (2010) Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 62(2):115–125.  
  102. Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila LA, Li J, Rao J, Chen X, Banin U, Wu AM, Sinclair R, Weiss S, Gambhir SS (2009) Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5(1):126–134.  
  103. Sharma P, Garg S (2010) Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 62:491–502.  
  104. Statista (2017) Global pharmaceutical R&D spending 2008–2022 | Statista. In:Statista
  105. Thakur RS, Agrawal R (2015) Application of nanotechnology in pharmaceutical formulation design and development. Curr Drug Ther 10(1):20–34.  
  106. The Project on Emerging Nanotechnologies. Consumer Products (updated 2010). . Accessed 5 Nov 2017
  107. The Project on Emerging Nanotechnologies. Health and fitness (updated 2010). . Accessed 5 Nov 2017
  108. Torre LA, Siegel RL, Ward EM, Jemal A (2016) Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 25(1).  
  109. U.S. Environmental Protection Agency: Pharmaceuticals and Personal Care Products Drug Disposal and Stewardship (2010) Ramifications for the Environment and Human Health. . Accessed 22 Nov 2017
  110. U.S. Food and Drug Administration (2010) Disposal by flushing of certain unused medicines: what you should know. U.S. Department of Human and Health Services. . Accessed 22 Nov 2017
  111. Van Vlerken L, Vyas T, Amiji M (2007) Poly (ethylene glycol)-modified Nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24(8):1405–1414.  
  112. Vanić Ž, Škalko-Basnet N (2013) Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci 50:29–41.  
  113. Villiers CL, Freitas H, Couderc R, Villiers MB, Marche PN (2009) Analysis of the toxicity of gold nanoparticles on the immune system: effect on dendritic cell functions. J Nanopart Res 12:55–60
  114. Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicines landscape. Nat Biotechnol 24:1211–1217.  
  115. Webster TJ, Lee S, An SS (2015) Today's diverse nano-theranostic applications and tomorrow's promises. Int J Nanomedicine 10(Spec Iss):1–2.  
  116. Weissig V, Guzman-Villanueva D (2015) Nanopharmaceuticals (part 2): products in the pipeline. Int J Nanomedicine 10:1245–1257.  
  117. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373.  
  118. Williams GC, Sinko PJ (1999) Oral absorption of the HIV protease inhibitors: a current update. Adv Drug Deliv Rev 39:211–238.  
  119. Wong TW, Dhanawat M, Rathbone MJ (2014) Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development. Expert Opin Drug Deliv 11:1419–1434
  120. Wurl O, Obbard JP (2004) A review of pollutants in the sea surface microlayer (SML): a unique habitat for microorganisms. Mar Pollut Bull 48:1016–1030
  121. Yang S, Chen Y, Gu K et al (2013) Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells. Int J Nanomedicine 8:2847–2858
  122. Zhang T, Sturgis TF, Youan BB (2011) pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. Eur J Pharm Biopharm 79(3):526–536
  123. Zhao G, Rodriguez BL (2013) Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomedicine 8:61–71.  
  124. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465.  
  125. Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torres dey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17(10):1783–1793

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Oluyomi Stephen Adeyemi
    • 1
  • Chiagoziem Anariochi Otuechere
    • 2
  • Adewale Adewuyi
    • 3
  • Oluwakemi Josephine Awakan
    • 1
  • David Adeiza Otohinoyi
    • 4
  1. 1.Department of Biochemistry, Medicinal Biochemistry, Nanomedicine and Toxicology LaboratoryLandmark UniversityOmu-AranNigeria
  2. 2.Department of BiochemistryRedeemer’s UniversityEdeNigeria
  3. 3.Department of Chemical SciencesRedeemer’s UniversityEdeNigeria
  4. 4.College of MedicineAll Saints UniversityBelairSaint Vincent and the Grenadines

Personalised recommendations