Synthesis of Some Bioactive Nanomaterials and Applications of Various Nanoconjugates for Targeted Therapeutic Applications

  • Sabyasachi Chakrabortty
  • Sunil Kumar Vimal
  • Sanjib BhattacharyaEmail author
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 46)


体育赛事投注记录in the last two decades, the boom in nanoscience has heightened the material science research to a different dimension. synthesis of different tunable sizes, propriety of new types of individual, and composite nanomaterials have inspired researcher to use various application domains such as semiconductor optoelectronics, photonics, catalysis, industrial tool, biomedical options, and too many to list them. in this chapter, we mainly focus on the synthesis of uncommon or newly emerging nanoparticle such as carbon dots, nanodiamonds whereas briefly mention other nanoparticles. since these carbon dot-based nanomaterials are relatively new and their biological applications are limited, we have listed the biological applications of various other types of well-known nanocomposites including quantum dot nanocrystals. therefore, this book chapter should give a comprehensive overview of chemistry of newly emerging nanomaterials and biological application of biocompatible nanomaterials that is well studied and information available.


Carbon Dots and Quantum dots Nanoparticle Synthesis Surface functionalization Targeting Therapeutics Nano-bio interfaces 



this was partly supported by southwest university to sb and srm university ap, amaravati to sc.


  1. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16.  
  2. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioengineering & Translational Medicine 1:10–29.  
  3. Arvizo RR et al (2012) Intrinsic therapeutic applications of Noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970.  
  4. Bagalkot V et al (2007) Quantum dot−Aptamer conjugates for synchronous Cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070.  
  5. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758.  
  6. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554.  
  7. Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P (2010) Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci 107:14541–14546.  
  8. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387.  
  9. Boudou J-P et al (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602.  
  10. Boudou J-P et al (2013) Fluorescent nanodiamonds derived from HPHT with a size of less than 10nm. Diam Relat Mater 37:80–86.  
  11. Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128.  
  12. Cai W et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676.  
  13. Chakrabortty S, Yang JA, Tan YM, Mishra N, Chan Y (2010) Asymmetric dumbbells from selective deposition of metals on seeded semiconductor Nanorods. Angew Chem Int Ed 49:2888–2892.  
  14. Chakrabortty S et al (2017) NIR-emitting and photo-thermal active nanogold as mitochondria-specific probes. Biomater Sci 5:966–971.  
  15. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016.  
  16. Chauhan VP et al (2011) Fluorescent Nanorods and Nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed 50:11417–11420.  
  17. Chien L-Y et al (2011) In vivo magnetic resonance imaging of cell tropsim, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials 32:3275–3284.  
  18. Cyrus T et al (2006) MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles. J Cardiovasc Magn Reson 8:535–541.  
  19. Dehaini D, Fang RH, Zhang L (2016) Biomimetic strategies for targeted nanoparticle delivery. Bioengineering & Translational Medicine 1:30–46.  
  20. Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci 108:1850.  
  21. Doherty MW et al (2013) The nitrogen-vacancy colour Centre in diamond. Phys Rep 528:1–45.  
  22. Dubertret B et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759.  
  23. Fang RH et al (2013) Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5:8884–8888.  
  24. Farokhzad OC et al (2004) Nanoparticle-Aptamer Bioconjugates. Cancer Res 64:7668.  
  25. Flacke S et al (2001) Novel MRI contrast agent for molecular imaging of fibrin. Circulation 104:1280–1285.  
  26. Florence AT (2012) “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J Control Release 164:115–124.  
  27. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976.  
  28. Gerion D et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871.  
  29. Ghosh D et al (2012) M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat Nanotechnol 7:677–682.  
  30. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791.  
  31. Guo W, Li JJ, Wang YA, Peng X (2003) Conjugation chemistry and bioapplications of semiconductor box Nanocrystals prepared via Dendrimer bridging. Chem Mater 15:3125–3133.  
  32. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic Nanocrystal solar cells processed from solution. Science 310:462.  
  33. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe Nanocrystals. J Phys Chem 100:468–471.  
  34. Jee A-Y, Lee M (2009) Surface functionalization and physicochemical characterization of diamond nanoparticles. Curr Appl Phys 9:e144–e147.  
  35. Jing L et al (2016) Aqueous based semiconductor Nanocrystals. Chem Rev 116:10623–10730.  
  36. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010.  
  37. Kang WJ, Chae JR, Cho YL, Lee JD, Kim S (2009) Multiplex imaging of single tumor cells using quantum-dot-conjugated Aptamers. Small 5:2519–2522.  
  38. Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in Cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–1519.  
  39. Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable Nanocrystal quantum dots. J Am Chem Soc 125:14652–14653.  
  40. Kim SH, Jeong JH, Chun KW, Park TG (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)−poly(ethylene glycol)−Folate conjugate. Langmuir 21:8852–8857.  
  41. Kirpotin DB et al (2006) Antibody targeting of long-circulating Lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732.  
  42. Kukowska-Latallo JF et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial Cancer. Cancer Res 65:5317.  
  43. Lazarovits J, Chen YY, Sykes EA, Chan WCW (2015) Nanoparticle–blood interactions: the implications on solid tumour targeting. Chem Commun 51:2756–2767.  
  44. Lee D-K et al (2017) Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci 114:E9445.  
  45. Lide DR (2004) CRC handbook of chemistry and physics, 84th edition edited by David R. Lide (National Institute of Standards and Technology). CRC press LLC: Boca Raton. 2003. 2616 pp. $139.95. ISBN 0-8493-0484-9. J Am Chem Soc 126:1586–1586.  
  46. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381.  
  47. Liu L et al (2009) Shape control of CdSe Nanocrystals with zinc blende structure. J Am Chem Soc 131:16423–16429.  
  48. Lloyd JB (2000) Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev 41:189–200.  
  49. Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of Cancer and inflammatory diseases. Acc Chem Res 41:120–129.  
  50. Maiti KK et al (2012) Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7:85–93.  
  51. Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci 109:16288.  
  52. Matsumura Y et al (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15:517–525.  
  53. McNamara K, Tofail SAM (2017) Nanoparticles in biomedical applications. Advances in Physics: X 2:54–88.  
  54. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446.  
  55. Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of Nanomedicine. Chem Rev 115:11147–11190.  
  56. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24.  
  57. Mishra N, Lian J, Chakrabortty S, Lin M, Chan Y (2012) Unusual selectivity of metal deposition on tapered semiconductor nanostructures. Chem Mater 24:2040–2046.  
  58. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715.  
  59. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148.  
  60. Nel AE et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557.  
  61. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618.  
  62. Noble CO et al (2004) Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets 8:335–353.  
  63. Pan XQ, Wang H, Lee RJ (2003) Antitumor activity of Folate receptor-targeted liposomal doxorubicin in a KB Oral carcinoma murine Xenograft model. Pharm Res 20:417–422.  
  64. Pang L et al (2017) A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv 24:83–91.  
  65. Pareek V, Bhargava A, Gupta R, Jain N, Panwar J (2017) Synthesis and applications of Noble metal nanoparticles: a review. Advanced Science, Engineering and Medicine 9:527–544.  
  66. Park JW et al (2002) Anti-HER2 Immunoliposomes. Clin Cancer Res 8:1172
  67. Patel NR et al (2010) Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J Liposome Res 20:244–249.  
  68. Pathak S, Choi S-K, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104.  
  69. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760.  
  70. Pellegrino T et al (2004) Hydrophobic Nanocrystals coated with an Amphiphilic polymer Shell: a general route to water soluble Nanocrystals. Nano Lett 4:703–707.  
  71. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615.  
  72. Pinaud F, King D, Moore H-P, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS Nanocrystals with Phytochelatin-related peptides. J Am Chem Soc 126:6115–6123.  
  73. Pouton CW, Wagstaff KM, Roth DM, Moseley GW, Jans DA (2007) Targeted delivery to the nucleus. Adv Drug Deliv Rev 59:698–717.  
  74. Qu H, Caruntu D, Liu H, O’Connor CJ (2011) Water-dispersible Iron oxide magnetic nanoparticles with versatile surface functionalities. Langmuir 27:2271–2278.  
  75. Rajendran L, Knölker H-J, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9:29–42.  
  76. Rao W et al (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating Cancer stem-like cells. ACS Nano 9:5725–5740.  
  77. Roy P, Chen P-C, Periasamy AP, Chen Y-N, Chang H-T (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18:447–458.  
  78. Sakamoto JH et al (2010) Enabling individualized therapy through nanotechnology. Pharmacol Res 62:57–89.  
  79. Sapsford KE et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074.  
  80. Shenderova OA, Barnard AS, Gruen DM (2006) In: Shenderova OA, Gruen DM (eds) Ultrananocrystalline Diamond, William Andrew Publishing, pp 3–22
  81. Simard P, Leroux J-C (2010) In vivo evaluation of pH-sensitive polymer-based Immunoliposomes targeting the CD33 antigen. Mol Pharm 7:1098–1107.  
  82. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205.  
  83. Sun Y-P et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757.  
  84. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci 100:6039.  
  85. Tung C-H, Mahmood U, Bredow S, Weissleder R (2000) In vivo imaging of Proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60:4953
  86. Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59:718–728.  
  87. Veiseh O et al (2009) Inhibition of tumor-cell invasion with Chlorotoxin-bound Superparamagnetic nanoparticles. Small 5:256–264.  
  88. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939.  
  89. Wang Y, Kohane DS (2017) External triggering and triggered targeting strategies for drug delivery. Nature Reviews Materials 2:17020.  
  90. Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. In: Integrative biology: quantitative biosciences from nano to macro, vol 6, pp 9–26.  
  91. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373.  
  92. Weissleder R et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–354.  
  93. Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nature Reviews Materials 1:16014.  
  94. Winter Patrick M et al (2006) Endothelial ανβ3 integrin–targeted Fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109.  
  95. Wu Y et al (2010) pH-responsive quantum dots via an albumin polymer surface coating. J Am Chem Soc 132:5012–5014.  
  96. Wu Y et al (2015) Programmable biopolymers for advancing biomedical applications of fluorescent Nanodiamonds. Adv Funct Mater 25:6576–6585.  
  97. Xia W, Low PS (2010) Folate-targeted therapies for Cancer. J Med Chem 53:6811–6824.  
  98. Xu X et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737.  
  99. Yamada Y, Harashima H (2008) Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 60:1439–1462.  
  100. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670.  
  101. Zhang L et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clinical Pharmacology & Therapeutics 83:761–769.  
  102. Zhang X-Q et al (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363–1384.  
  103. Zhu H et al (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun:5118–5120.  
  104. Zhu B et al (2013) Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mater Chem C 1:580–586.  

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Sabyasachi Chakrabortty
    • 1
    • 2
  • Sunil Kumar Vimal
    • 3
    • 4
  • Sanjib Bhattacharya
    • 4
    Email author
  1. 1.Max-Planck-Institute for Polymer ResearchMainzGermany
  2. 2.Department of ChemistrySRM University, AP – AmaravatiGunturIndia
  3. 3.International Institutes for Integrative Sleep Medicine (WPI-IIIS)University of TsukubaTsukubaJapan
  4. 4.Department of Pharmaceutical ScienceSouthwest UniversityChongqing ShiChina

Personalised recommendations