体育赛事投注记录

advertisement

Real-Time Object Detection in Remote Sensing Images Using Deep Learning

  • Vijender Busi ReddyEmail author
  • K. Pramod Kumar
  • S. Venkataraman
  • V. Raghu Venkataraman
Conference paper
  • 62 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1141)

Abstract

deep learning technology has grown vastly in the present era and penetrating to all research fields. deep learning mechanism for objection detection is gaining prominence in remote sensing data analysis. the main challenge of object detection in remote sensing data is that the objects appear small and different objects look similar in the images. another challenge in remote sensing data especially for real-time detection is the volume of the data handling which is substantially large. this paper presents a method based on faster-rcnn network with required modifications to suit real-time object detection in remote sensing images.

Keywords

Deep learning Satellite data Remote sensing Neural networks IRS satellite 

References

  1. 1.
    Cartosat 2 series satellite.
  2. 2.
    Chen, X., Xiang, S., Liu, C., Pan, C.H.: Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 11(10), 1797–1801 (2014)
  3. 3.
    Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)
  4. 4.
    Chen, Y., Zhao, X., Jia, X.: Spectralspatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2381–2392 (2015)
  5. 5.
    DeepID-Net.
  6. 6.
    Geng, J., Fan, J., Wang, H., Ma, X., Li, B., Chen, F.: High-resolution SAR image classification via deep convolutional autoencoders. IEEE Trans. Geosci. Remote Sens. 12(11), 2351–2355 (2015)
  7. 7.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2017)
  8. 8.
    GoogleNet.
  9. 9.
    Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)
  10. 10.
    Imagenet LSVRC competition.
  11. 11.
    Label image tool.
  12. 12.
    Liang, H., Li, Q.: Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 8(2), 99 (2016)
  13. 13.
    Lyu, H., Lu, H., Mou, L.: Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 8(6), 506 (2016)
  14. 14.
    Mnih, V., Hinton, G.E.: Learning to detect roads in highresolution aerial images. In: Proceedings of the Europe Conference on Computer Vision, pp. 210–223 (2010)
  15. 15.
    Overfeat network.
  16. 16.
    Qi, S., Ma, J., Lin, J., Li, Y., Tian, J.: Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images. IEEE Geosci. Remote Sens. Lett. 12(7), 1451–1455 (2015)
  17. 17.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. [cs.CV] (2016)
  18. 18.
    ResourceSat-2 and ResourceSat-2A satellites of ISRO.
  19. 19.
    Wu, H., Zhang, H., Zhang, J., Xu, F.: Fast aircarft detection in satellite images based on convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), Quebac City, QC, pp. 4210–4214 (2015)
  20. 20.
    Zhang, F., Du, B., Zhang, L.: Scene classification via a gradient boosting random convolutional network framework. IEEE Trans. Geosci. Remote Sens. 54(3), 1793–1802 (2016)
  21. 21.
    Zhao, A., Fu, K., Sun, H., Sun, X., Li, F., Zhang, D., Wang, H.: An effective method based on ACF for aircraft detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 14(5), 744–748 (2017)
  22. 22.
    Zhou, P., Cheng, G., Liu, Z., Bu, S., Hu, X.: Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping. Multidimens. Syst. Signal Process. 27(4), 925–944 (2016)

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  • Vijender Busi Reddy
    • 1
    Email author
  • K. Pramod Kumar
    • 1
  • S. Venkataraman
    • 1
  • V. Raghu Venkataraman
    • 1
  1. 1.Department of SpaceAdvanced Data Processing Research Institute (ADRIN), Government of IndiaSecunderabadIndia

Personalised recommendations