体育赛事投注记录

advertisement

Predicting the Primary Dominant Personality Trait of Perceived Leaders by Mapping Linguistic Cues from Social Media Data onto the Big Five Model

  • P. S. DandannavarEmail author
  • S. R. Mangalwede
  • P. M. Kulkarni
Conference paper
  • 62 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1141)

Abstract

in today’s world of a virtually interconnected society, the number of social media users (facebook, twitter, instagram, etc.) is ever-increasing. social media has become very popular and one of the main channels of communication with users share different types of information—updates, posts, pictures, etc. twitter—a microblogging site—has become increasingly popular platform over the last few years with 330 million monthly active users, who on average generate 6000 tweets every second. the continued and growing use of social media has resulted in the generation of very large volumes of social media data, which can be used for research purposes. one potential application is automatic personality prediction—which aims to analyze social data and predict the users’ personality traits. this is possible because people inadvertently leave behind linguistic cues to personality in their social data. these cues, if properly mined, provide a short cut to personality detection of users. using digital records to predict personality offers an alternative solution to overcome the drawbacks of manual methods, which while being accurate are time-consuming and expensive. in this work, an attempt is made to predict the primary dominant trait of leaders using social media data.

Keywords

Personality Leadership Sentiment analysis Big five Personality trait prediction Machine learning 

References

  1. 1.
    Golbeck, J., Robles, C., Turner, K.: Predicting personality with social media. CHI 2011, May 7–12, Vancouver, BC, Canada, ACM (2011). ISBN 978-1-4503-0268-5/11/05
  2. 2.
    Pennacchiotti, M., Popescu, A.M.: A machine learning approach to twitter user classification. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (2011)
  3. 3.
    Wald, R., Khoshgoftaar, T., Summer, C.: Machine prediction of personality from Facebook profiles. In: IEEE IRI (2012). ISBN 978-4673-2284-3/2012
  4. 4.
    Qiu, H., Lin, H., Ramsay, J., Yang, F.: You are what you tweet: personality expression and perception on Twitter. J. Res. Personality 46, 710–718 (2012)
  5. 5.
    Bai, S., Hao, B., Lim, A., Yuan, S., Gao, R., Zhu, T.: Predicting big five traits of microblog users. In: 2013 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (2013).  
  6. 6.
    Pianesi, Fabio: Searching for personality. IEEE Signal Process. Mag. (2013).  
  7. 7.
    Poria, S., Gelbukh, A., Agarwal, B., Cambria, E., Howard, N.: Common sense knowledge based personality recognition from text. In: MICAI 2013, Part II, LNAI 8266, pp. 484–496. Springer-Verlag Berlin Heidelberg (2013)
  8. 8.
    Nie, D., Guan, Z., Hao, B., Bai, S., Zhu, T.: Predicting personality on social media with semi-supervised learning. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology. IEEE (2014).  . ISBN 978-1-4799-4143-8
  9. 9.
    Lima, A.C.E.S., de Castro, L.N.: A multi-label, semi-supervised classification approach applied to personality prediction in social media.  
  10. 10.
    Park, G., Schwartz, H.A., Kosinki, M., Stillwell, D.J.: Automatic personality assessment through Social Media Language. J. Personality Soc. Psychol. (2014).  
  11. 11.
    Vinciarelli, A., Mohammadi, G.: A survey of personality computing. IEEE Trans. Affect. Comput. 5(3) (2014)
  12. 12.
    Sharma, K., Kaur, A.: A review of the existing state of Personality predictions of Twitter users with Machine Learning Algorithms. IOSR J. Comput. Eng. (IOSR-JCE) 17(4), 35–38. e-ISSN: 2278-0661, p-ISSN: 2278-8727
  13. 13.
    Sharma, K., Kaur, A.: Personality prediction of Twitter users with logistic regression classifier learned using stochastic gradient descent. IOSR J. Comput. Eng. (IOSR-JCE) 17(4), 39–47. e-ISSN: 2278-0661, p-ISSN: 2278-8727
  14. 14.
    Sagadevan, S., Malim, N.H.A.H., Husin, M.H.: Sentiment valences or automatic personality detection of online social network users using three factor model. In: The Third Information Systems International Conference (ISICO2015) (2015)
  15. 15.
    Kedar, S.V., Bormane, D.S.: Automatic personality assessment: a systematic review. In: 2015 International Conference on Information Processing (ICIP), Vishwarkarma Institute of Technology. IEEE (2015). ISBN 978-1-4673-7758-4/15
  16. 16.
    Azucar, D, Marengo, D., Settanni, M.: Predicting the Big 5 personality traits from digital footprints on social media: a meta-analysis. J. Personality Individ. Differ. 124, 150–159 (2018)
  17. 17.
    Akhtar, R., Winsborough, D., Ort, U., Johnson, A.: Detecting the dark side of personality using social media status updates. J. Personality Individ. Differ. 132, 90–97 (2018).  
  18. 18.
    Argamon, S., Koppel, M., Pennebaker, J.W., Schler, J.: Automatic profiling the author of an anonymous text. Commun. ACM 52, 119–123 (2009).  
  19. 19.
    Farnadi, G., Sitaraman, G., Rohani, M., Kosinki, M., Stillwell, D., Moens, M.-F., Davalos, S., De Cock, M.: How are you doing? Emotions and personality in Facebook. In: EMPIRE2014: 2nd Workshop on Emotions and Personality in Personalized Services, pp. 45–56 (2014)
  20. 20.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. In: Proceedings of the National Academy of Sciences of the United States of America, p. 110 (2013).  
  21. 21.
    Judge, T.A., Bono, J.E., Ilies, R., Gerhardt, M.W.: Personality and leadership: a qualitative and quantitative review. J. Appl. Psychol. 87(4), 765–780.  
  22. 22.
  23. 23.
  24. 24.
    McCormack, L., Mellor, D.: The role of personality in leadership: an application of the five-factor model in the Australian military. School of Psychology, Deakin University, Burwood 3215
  25. 25.
    Correlations between the Big Five Personality Traits and Leadership. ID 2382763, Skidmore College.
  26. 26.
    O’Neil, D.P.: Predicting leader effectiveness: personality traits and character strengths. Department of Psychology and Neuroscience Duke University
  27. 27.
    Özbağ, G.K.: The role of personality in leadership: five factor personality traits and ethical leadership. In: 12th International Strategic Management Conference, ISMC 2016, 28–30 October 2016, Antalya, Turkey.  . ISSN 1877-0428
  28. 28.
    Baptiste, B.: The relationship between the big five personality traits and authentic leadership. Walden University ()
  29. 29.
    Colbert, A.E., Judge, T.A., Choi, D., Wang, G.: Assessing the trait theory of leadership using self and observer ratings of personality: the mediating role of contributions to group success. The Leadership Quarterly ()
  30. 30.
  31. 31.

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  • P. S. Dandannavar
    • 1
    Email author
  • S. R. Mangalwede
    • 1
  • P. M. Kulkarni
    • 2
  1. 1.Department of CSEKLS Gogte Institute of TechnologyKarnatakaIndia
  2. 2.Department of MBAKLS Gogte Institute of TechnologyKarnatakaIndia

Personalised recommendations