体育赛事投注记录

体育赛事投注记录advertisement

Video Surveillance for the Crime Detection Using Features

  • Aastha ChowdharyEmail author
  • Bhawana Rudra
Conference paper
  • 63 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1141)

Abstract

this paper aims at extending the comparison between two images and locating the query image in the source image by matching the features in the videos by presenting a method for the recognition of a particular person or an object. the frames matching the feature (not feature its query) object in a given video will be the output. we describe a method to find unique feature points in an image or a frame using sift, i.e., scale-invariant feature transform method. sift is used for extracting distinctive feature points which are invariant to image scaling or rotation, presence of noise, changes in image lighting, etc. after the feature points are recognized in an image, the image is tracked for comparison with the feature points found in the frames. the feature points are compared using homography estimation search to find the required query image in the frame. in case the object is not present in the frame, then it will not present any output.

Keywords

Video similarity search SIFT Object recognition Feature extraction Video surveillance 

References

  1. 1.
    Lowe, D.G.: Distinctive image features from scale—invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
  2. 2.
    Funt, B.V., Finlayson, G.D.: Color constant color indexing. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 522–529 (1995)
  3. 3.
    Brown, M., Lowe, D.G.: Invariant features from interest point groups. In: British Machine Vision Conference, Cardiff, Wales, pp. 656–665 (2002)
  4. 4.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scaleinvariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, pp. 264–27 (2003)
  5. 5.
    Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: European Conference on Computer Vision, Dublin, Ireland, pp. 1832 (2000)
  6. 6.
    Hu, X., Tang, Y., Zhang, Z.: Video object matching based on SIFT algorithm. In: IEEE International Conference Neural Networks & Signal Processing, Zhenjiang, China, June 8–10 (2008)
  7. 7.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157 (1999)
  8. 8.
    Rucklidge, W.J.: Efficiently locating objects using the Hausdorff distance. Int. J. Comput. Vis. 24(3), 251–270(20) (1997)
  9. 9.
    Grabner, M., Grabner, H., Bischof, H.: Fast approximated SIFT. In: Proceedings of Asian Conference on Computer Vision (ACCV 2006), Hyderabad, India, Springer, LNCS 3851, pp. 918–927 (2006)
  10. 10.
    Shao, H., Svoboda, T., Tuytelaars, T.: HPAT indexing for fast object/scene recognition based on local appearance. In: Proceedings of International Conference on Image Video Retrieval, Urbana, IL, pp. 71–80 (2003)
  11. 11.
    Anju, P.S., Varma, S., Paul, V., Sankaranarayanan, P.N.: Video copy detection using F-sift and graph based video sequence matching. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 6(1), 152–158
  12. 12.
    Zhao, W.-L., Ngo, C.-W.: Flip-invariant SIFT for copy and object detection. IEEE Trans. Image Process. 22(3) (2013)
  13. 13.
    Tiwar, M., Singhai, R.: A review of detection and tracking of object from image and video sequences. Int. J. Comput. Intell. Res. 13(5), 745–765 (2017). ISSN 0973–1873
  14. 14.
    Susar, R., Dongare, M.: Moving object detection, a succinct review. Int. J. Adv. Res. Comput. Commun. Eng. 4, 334–336 (2015)
  15. 15.
    Guan, B., Ye, H., Liu, H., Sethares, W.: Target image video search based on local features
  16. 16.
    Holland vs argentina 2014 semi-final full match 1 youtube. YouTube video, July 10 2014. Accessed 1 Aug 2018
  17. 17.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, Corfu, Sep (1999)
  18. 18.
    Pope, A.R., Lowe, D.G.: Learning probabilistic appearance models for object recognition in early visual learning. In: Nayar, S., Poggio, T. (eds.) Oxford University Press, pp. 67–97 (1996)
  19. 19.
    Cao, Z., Zhu, M.: An efficient video similarity search algorithm. IEEE Trans. Consum. Electron. 56(2) (2010)
  20. 20.
    Seo, K.-D., Park, S., Jung, S.-H.: Wipe scene-change detector based on visual rhythm spectrum. IEEE Trans. Consum. Electron. 55, 831–838 (2009)
  21. 21.
    Ke, Y., Sukthankar, R., Huston, L.: An efficient parts-based near duplicate and sub-image retrieval system. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 869–876 (2004)
  22. 22.
    Yang, X., Tian, Q., Chang, E.-C.: A color fingerprint of video shot for content identification. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 276–279 (2004)
  23. 23.
    Ramya, P., Rajeswari, R.: A modified frame difference method using correlation coefficient for background subtraction. Procedia Comput. Sci. 93, 478–485 (2016).  
  24. 24.
    Risha, K.P., Kumar, A.C.: Novel method of detecting moving object in video. Procedia Technol. 24, 1055–1060 (2016).  
  25. 25.
    Najva, N., Bijoy, K.E.: SIFT and tensor-based object detection and classification in videos using deep neural networks. Procedia Comput. Sci. 93, 351–358 (2016).  
  26. 26.
    OpenCV-Python Tutorials.
  27. 27.
    OpenCV: Introduction to SIFT.

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Department of Information TechnologyNational Institute of Technology KarnatakaMangaloreIndia

Personalised recommendations