体育赛事投注记录

advertisement

Image Compression Based on a Hybrid Wavelet Packet and Directional Transform (HW&DT) Method

  • P. Madhavee Latha
  • A. Annis FathimaEmail author
Conference paper
  • 20 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 127)

Abstract

in this paper, a hybrid wavelet packet and directional transform (hw&dt) method is proposed to compress an image effectively. the image is pixel de-correlated using daubechies wavelet packet transform and set of wavelet packet coefficients are transformed using directional transform. the directional transform pairs dct-ii, dct-v, dct-viii and dst-vii are useful in retrieving the texture information in different directions. then the coefficients of the hybrid transform are uniformly quantized and entropy coded using huffman coding, generating the bit-stream. the performance evaluation of the proposed work is done using the compression parameters like structural similarity index (ssim), bit-saving (%), peak signal to noise ratio (psnr) and mean square error (mse). the experimental results confirm the improvement in bit-saving for the image.

Keywords

Discrete cosine transform (DCT) Wavelet packet transform (WPT) Uniform quantization Huffman coding 

References

  1. 1.
    Statista. . Last accessed 02 Dec 2019
  2. 2.
    Zephoria Digital marketing. . Last accessed 02 Dec 2019
  3. 3.
    Strutz T (2015) Context-based predictor blending for lossless color image compression. IEEE Trans Circuits Syst Video Technol 26(4):687–695
  4. 4.
    Leung R, Taubman D (2005) Transform and embedded coding techniques for maximum efficiency and random accessibility in 3-D scalable compression. IEEE Trans Image Process 14(10):1632–1646
  5. 5.
    Song HS, Cho NI (2009) DCT-based embedded image compression with a new coefficient sorting method. IEEE Signal Process Lett 16(5):410–413
  6. 6.
    Ponomarenko NN, Egiazarian KO, Lukin VV, Astola JT (2007) High-quality DCT-based image compression using partition schemes. IEEE Signal Process Lett 14(2):105–108
  7. 7.
    Wallace GK (1992) The JPEG still picture compression standard. IEEE Trans Consum Electron 38(1):xviii–xxiv
  8. 8.
    Ichigaya A, Nishida Y, Nakasu E (2008) Nonreference method for estimating PSNR of MPEG-2 coded video by using DCT coefficients and picture energy. IEEE Trans Circuits Syst Video Technol 18(6):817–826
  9. 9.
    Ngan KN, Chai D, Millin A (1996) Very low bit rate video coding using H. 263 coder. IEEE Trans Circuits Syst Video Technol 6(3):308–312
  10. 10.
    Kalva H (2006) The H. 264 video coding standard. IEEE Multimedia 13(4):86–90
  11. 11.
    Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668
  12. 12.
    Zhou M, Gao W, Jiang M, Yu H (2012) HEVC lossless coding and improvements. IEEE Trans Circuits Syst Video Technol 22(12):1839–1843
  13. 13.
    Shi C, Zhang J, Zhang Y (2015) A novel vision-based adaptive scanning for the compression of remote sensing images. IEEE Trans Geosci Remote Sens 54(3):1336–1348
  14. 14.
    Christopoulos C, Skodras A, Ebrahimi T (2000) The JPEG2000 still image coding system: an overview. IEEE Trans Consum Electron 46(4):1103–1127
  15. 15.
    Thakur VS, Gupta S, Thakur K (2017) Hybrid WPT-BDCT transform for high-quality image compression. IET Image Proc 11(10):899–909
  16. 16.
    Phanprasit T (2013) Compression of medical image using vector quantization. In: The 6th 2013 biomedical engineering international conference. IEEE, Amphur Muang, Thailand, pp 1–4
  17. 17.
    Hernández-Cabronero M, Blanes I, Pinho AJ, Marcellin MW, Serra-Sagristà J (2016) Progressive lossy-to-lossless compression of DNA microarray images. IEEE Signal Process Lett 23(5):698–702
  18. 18.
    Zeng B, Fu J (2008) Directional discrete cosine transforms—a new framework for image coding. IEEE Trans Circuits Syst Video Technol 18(3):305–313
  19. 19.
    Zhao X, Zhang L, Ma S, Gao W (2010) Rate-distortion optimized transform for intra-frame coding. In: 2010 IEEE international conference on acoustics, speech and signal processing. IEEE, Dallas, pp 1414–1417
  20. 20.
    Saxena A, Fernandes FC (2012) On secondary transforms for intra prediction residual. In: 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, Kyoto, pp 1201–1204
  21. 21.
    Zhao X, Chen J, Karczewicz M, Said A, Seregin V (2018) Joint separable and non-separable transforms for next-generation video coding. IEEE Trans Image Process 27(5):2514–2525

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Vellore Institute of TechnologyChennaiIndia

Personalised recommendations