体育赛事投注记录

advertisement

A Fast Mode of Tweets Polarity Detection

  • V. P. LijoEmail author
  • Hari Seetha
Conference paper
  • 20 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 127)

Abstract

体育赛事投注记录polarity detection is an emerging area of research in text mining. polarity detection is observing and identifying the sentiment inclination of text, whether it is positive or negative. in this paper, a fast mode of supervised learning for polarity detection on tweets is proposed, that is using datasets available in public. the feature selection strategy ensures reduced dimensionality. the low dimension data processing on apache spark supports scalability for large datasets. the experiment shows that the method is supporting high scalability and efficiency.

Keywords

Sentiment analysis Polarity detection Big data Twitter analysis 

References

  1. 1.
    Alham NK, Li M, Liu Y, Hammoud S (2011) A mapreduce-based distributed SVM algorithm for automatic image annotation. Comput Math Appl 62(7):2801–2811
  2. 2.
    Baccianella S, Esuli A, Sebastiani F (2010) Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, vol 10, pp 2200–2204
  3. 3.
    Bing L (2012) Sentiment analysis: a fascinating problem. Morgan and Claypool Publishers, pp 7–143
  4. 4.
    Bravo-Marquez F, Mendoza M, Poblete B (2014) Meta-level sentiment models for big social data analysis. Knowl-Based Syst 69:86–99
  5. 5.
    Cambria E, Havasi C, Hussain A (2012) Senticnet 2: a semantic and affective resource for opinion mining and sentiment analysis. In: Twenty-Fifth international FLAIRS conference
  6. 6.
    Caropreso MF, Matwin S, Sebastiani F (2001) A learner-independent evaluation of the usefulness of statistical phrases for automated text categorization. Text Databases Doc Manage: Theory Pract 5478:78–102
  7. 7.
    Councill IG, McDonald R, Velikovich L (2010) What’s great and what’s not: learning to classify the scope of negation for improved sentiment analysis. In: Proceedings of the workshop on negation and speculation in natural language processing. Association for Computational Linguistics, pp 51–59
  8. 8.
    Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12):2009
  9. 9.
    Kolchyna O, Souza TT, Treleaven P, Aste T (2015) Twitter sentiment analysis: Lexicon method, machine learning method and their combination. arXiv preprint
  10. 10.
    Mohammad SM, Kiritchenko S, Zhu X (2013) NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. arXiv preprint
  11. 11.
    Nielsen FÅ (2011) A new anew: evaluation of a word list for sentiment analysis in microblogs. arXiv preprint
  12. 12.
    Platt J (1998) Sequential minimal optimization: a fast algorithm for training support vector machines
  13. 13.
    Priyadarshini A et al (2015) A map reduce based support vector machine for big data classification. Int J Database Theory Appl 8(5):77–98
  14. 14.
    Salton G, McGill MJ (1983) Introduction to modern information retrieval. McGraw-Hill, New York
  15. 15.
    Thelwall M, Buckley K, Paltoglou G (2012) Sentiment strength detection for the social web. J Am Soc Inform Sci Technol 63(1):163–173
  16. 16.
    Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of human language technology conference and conference on empirical methods in natural language processing

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Vellore Institute of TechnologyVelloreIndia
  2. 2.VIT-APAmaravatiIndia

Personalised recommendations