体育赛事投注记录

体育赛事投注记录advertisement

Performance Study of Spin Field-Effect Transistor Based on Cobalt-Modified Iron Oxide Ferromagnetic Electrode

  • Neetu GyanchandaniEmail author
  • Santosh Pawar
  • Prashant Maheshwary
  • Kailash Nemade
Conference paper
  • 34 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1162)

Abstract

Spintronics-based field-effect transistors (s-FET) are a new category of devices, which is an improvement over ordinary transistor by adding the properties of magnetoresistance. The conductivity of s-FET can be controlled by the spin degree of freedom of an electron, which results in extremely low power consumption and low heat dissipation. In the present work, a primary attempt is made to analyze the performance of s-FET designed on two-dimensional electron gas substrate. Superconducting quantum interference device (SQUID) is employed to analyze the magnetic properties of ferromagnetic contacts that cobalt-modified iron oxide. The role of spin polarization in the spin transport phenomenon of s-FET is also analyzed. It is proved that for the higher possible value of spin polarization, spin current also increases. For the value of spin polarization (p = 0.8), strong enhancement was observed in the spin current. The switching action in s-FET is checked as a function of gate voltage, and it shows a strong dependence on the gate voltage.

Keywords

Spintronics Field-effect transistor Two-dimensional electron gas substrate 

Notes

Acknowledgements

体育赛事投注记录prof. (mrs.) neetu gyanchandani is very much thankful to dr. s. r. choudhary, principal, jd college of engineering and management, nagpur, for providing necessary academic help.

References

  1. 1.
    Awschalom, D.D., Flatte, M.E.: Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007)
  2. 2.
    Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)
  3. 3.
    Choi, W.Y., Kim, H.J., Chang, J., Han, S.H., Koo, H.C.: Ballistic spin Hall transistor using a heterostructure channel and its application to logic devices. J. Electron. Mater. 46, 3894–3898 (2016)
  4. 4.
    Kim, J.H., Bae, J., Min, B.C., Kim, H., Chang, J., Koo, H.C.: All-electric spin transistor using perpendicular spins. J. Magn. Magn. Mater. 403, 77–80 (2016)
  5. 5.
    Lin, X., Su, L., Si, Z., Zhang, Y., Bournel, A., Zhang, Y., Klein, J., Fert, A., Zhao, W.: Gate-driven pure spin current in graphene. Phys. Rev. Appl. 8, 34006–34011 (2017)
  6. 6.
    Dankert, A., Dash, S.P.: Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nature Commun. 8, 16093–16099 (2017)
  7. 7.
    Koo, H.C., Han, S.H., Chang, J.Y., Kim, H.J., Choi, J.W.: Complementary Spin Transistor Logic Circuit. U.S. Patent (2012)
  8. 8.
    Krishnan, R.: Spin valve transistors. Int. J. Innov. Res. Adv. Eng. 1, 118–122 (2014)
  9. 9.
    Kumar, P.S.A., Lodder, J.C.: The spin-valve transistor. J. Phys. D Appl. Phys. 33, 2911–2920 (2000)
  10. 10.
    Koo, H.C., Kwon, J.H., Eom, J., Chang, J., Han, S.H., Johnson, M.: Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009)
  11. 11.
    Xiao, Y., Zhu, R., Deng, W.: Ballistic transport in extended Datta-Das spin field effect transistors. Solid State Commun. 151, 1214–1219 (2011)
  12. 12.
    Kum, H., Heo, J., Jahangir, S., Banerjee, A., Guo, W., Bhattacharya, P.: Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts. Appl. Phys. Lett. 100, 182402–182407 (2012)
  13. 13.
    Jung, S., Lee, H.: Spin-current-induced charge current. Phys. Rev. B 71, 25341–25348 (2005)
  14. 14.
    Liu, L., Pai, C., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012)
  15. 15.
    Ando, Y.: Spintronics technology and device development. Jpn. J. Appl. Phys. 54, 070101–070111 (2015)
  16. 16.
    Sharma, P.: How to create a spin current. Science 307, 531–533 (2005)
  17. 17.
    Hirsch, J.E.: Spin hall Effect. Phys. Rev. Lett. 83, 1834–1839 (1999)
  18. 18.
    Valenzuela, S.O., Tinkham, M.: Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006)
  19. 19.
    Sakuraba, Y., Hattori, M., Oogane, M., Ando, Y.: Giant tunneling magnetoresistance in Co2MnSi∕Al–O∕Co2MnSi magnetic tunnel junctions. Appl. Phys. Lett. 88, 192508–192514 (2006)
  20. 20.
    Kasai, S., Hirayama, S., Takahashi, Y.K., Mitani, S., Hono, K., Adachi, H.: Thermal engineering of non-local resistance in lateral spin valves. Appl. Phys. Lett. 104, 162410–162415 (2014)
  21. 21.
    Garzon, S., Zutic, I., Webb, R.A.: Temperature-dependent asymmetry of the nonlocal spin-injection resistance: evidence for spin nonconserving interface scattering. Phys. Rev. Lett. 194, 176601–176608 (2005)
  22. 22.
    Sugahara, S., Nitta, J.: Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010)
  23. 23.
    Yamaguchi, T., Moriya, R., Oki, S., Yamada, S.: Spin injection into multilayer graphene from highly spin-polarized Co2FeSi Heusler alloy. Appl. Phys. Exp. 9, 63006–63012 (2016)
  24. 24.
    Lazic, P., Belashchenko, K.D., Zutic, I.: Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures. Phys. Rev. B 93, 241401–241407 (2016)

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  • Neetu Gyanchandani
    • 1
    Email author
  • Santosh Pawar
    • 2
  • Prashant Maheshwary
    • 1
  • Kailash Nemade
    • 3
  1. 1.Department of ElectronicsJD College of Engineering and ManagementNagpurIndia
  2. 2.School of EngineeringDr. A.P.J. Abdul Kalam UniversityIndoreIndia
  3. 3.Department of PhysicsIndira MahavidyalayaKalambIndia

Personalised recommendations