体育赛事投注记录

advertisement

Animal Repellents from Agricultural Fields

  • P. Sreevardhan
  • B. Vidheya Raju
  • Durgesh NandanEmail author
Conference paper
  • 33 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1162)

Abstract

体育赛事投注记录crop damages inflicted by animals are one of the biggest challenges throughout the world. animals such as pigs, monkeys, and many others may cause spartan damage to crops. they can damage the plants by feeding on plant parts or only by organization more than the field and squashing in excess of the crops. therefore, animals may easily cause significant yield losses and incite additional financial problems. in order to decrease the problems or damages caused by animals to the farmer which destroys the farm, there are many ways. the ways include haunting the animals, producing the sounds manually, and using chemical compounds for repelling birds and animals; some are regulated by state and federal laws while others are untested. so, the actuation of ultrasonic devices can repel hazardous animals by using the principles of bioacoustics. humans have a hearing range of 20 hz–20 khz. similarly, each and every animal as its individual hearing range like rats can hear from 200 hz to 90 khz; snakes can hear from 80 hz to 1 khz, now over the whole hearing range only in a certain range, known as a most sensitive hearing section which helps to repel animals. an up-gradation to the preexisting methods, utilizing ultrasonic frequencies has been processed to deter animals. ultrasonic animal repelled produces different sound frequencies depending on the animal species to repel at a particular time. hence, the high-frequency and high amount sound waves are used to drive away from the animals, which cause harm to farms. those ultrasonic sounds can repel animals or rodents (including rats, pigs, and monkeys). for repelling different animals, separate electronic circuits will be designed to produce sound waves of different frequencies. these frequencies are time-multiplexed using arduino uno and radiate into the air to repel animals. these signals are to be amplified using an amplification circuit. these amplified signals are given to the speaker to produce different sounds at different time intervals. however, these frequencies do not disturb the hearing ability of persons.

Keywords

Animal repulsive Agriculture Webcam Detector Sensors IoT Ultrasonic sensor Arduino 

References

  1. 1.
    Kim, S.-H., Kim, D.-H., Park H.-D.: Animal situation tracking service using RFID, GPS and sensors. In: Second International Conference on Computer and Network Technology, pp. 153–156 (2010)
  2. 2.
    Baranwal, T., Pateriya, P.K.: Development of IoT based smart security and monitoring devices for agriculture. In Proceedings of the 6th International Conference Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 Jan 2016, pp. 597–602 (2016)
  3. 3.
    Saini, S.S., Bansal, D., Brar, G.S., Sidhu, E.: Solar energy driven Arduino based smart mosquito repeller system. In: This Full-Text Paper was Peer-Reviewed and Accepted to be Presented at the IEEE Wisp NET 2016 Conference, pp. 1239–1243 (2016)
  4. 4.
    Shetgaonkar, A.A., Shet, V.N.: Smart animal repeller. In: International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017), pp. 3303–3308 (2017)
  5. 5.
    Zhang, N., Thompson, C.J., Togane, D., Cayouette, F., Nguyen, K.Q., Camborde, M.-L.: Design of front-end electronic circuits for dedicated PET detectors. In: IEEE Nuclear and Science Symposium Conference Records (2002)
  6. 6.
    Milosavljevic, Z., Cvetkovic, M., Dekleva, N., Radojkovic, M., Majic, V.: Interaction of magnetic field and sulphur-mustard in animals. In: Annual International conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, no. 4 (1990)
  7. 7.
    Miyaoka, R.S., Lewellen, T.K.: Design analysis of a high-resolution detector block for a low-cost small animal positron emission imaging system, pp. 1370–1374 (1995)
  8. 8.
    Correia, J.A., Burnham, C.A., Kaufman, D., Brownell, A., Fischman, A.J.: Quasi-continuous detector module design for high-resolution small animal PET. IEEE Trans. Nucl. Sci. (2005)
  9. 9.
    Francis, J.T., Chapin, J.K.: Force field apparatus for investigating movement control in small animals. IEEE Trans. BME 51(6), 963–964 (2004)
  10. 10.
    Karlsson, J., Ren, K., Li, H.: Tracking and identification of animals for a digital zoo. In: 2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference on Cyber, Physical and Social Computing, pp. 510–515 (2010)
  11. 11.
    Yeu, C.Y.: Animal voice recognition for identification (ID) detection system. In: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications
  12. 12.
    Kutrowski, T.M., Meydan, T., Barnes, J., Aldoumani, N., Erichsen, J.T.: Instrumentation for monitoring animal movements. In: Proceedings IEEE SENSORS, pp. 1295–1299 (2014)
  13. 13.
    Forslund, D., Bjarkefur, J.: Night vision animal detection. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 737–742 (2014)
  14. 14.
    Radha, R., Kathiravan, K., Vineeth, V., Sanjay, v., Venkatesh, S.: Prevention of Monkey trespassing in agricultural field using application agricultural specific flooding approach in wireless sensor network. In: 2015 IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development (TIAR 2015), pp. 106–111 (2015)
  15. 15.
    Stewart J.L.: Experiments with sounds in repelling mammals. In: Proceedings of the 6th Vertebrate Pest Conference, pp. 47 (1974)
  16. 16.
    Tiwari, DK., Alam, MA.: Electronic pest repellent: a review.   (2016)
  17. 17.
    Siahaan, Y., Wardijono, B.A., Mukhlis, Y.: Design of birds detector and repellent using frequency based Arduino UNO with android system. In: 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE) (2017)
  18. 18.
    Saha, S.R., Ghosh, D., Mandal, K.K.: Mosquito repellent circuit. Int. J. Eng. Tec. Res. (IJETR)
  19. 19.
    Yash, S.: Electronic mosquito repellent. (2015)
  20. 20.
  21. 21.

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  • P. Sreevardhan
    • 1
  • B. Vidheya Raju
    • 1
  • Durgesh Nandan
    • 2
    Email author
  1. 1.Department of Electronics and Communication EngineeringAditya Engineering CollegeSurampalemIndia
  2. 2.Accendere Knowledge Management Services Pvt. Ltd., CL Educate Ltd.New DelhiIndia

Personalised recommendations