体育赛事投注记录

advertisement

Dynamic Virtual Machine Provisioning in Cloud Computing Using Knowledge-Based Reduction Method

  • R. BhaskarEmail author
  • B. S. Shylaja
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1162)

Abstract

cloud infrastructure performance extremely depends ahead on the task scheduling and load balancing. the recent growth of cloud computing and service provider’s key challenge is scheming proficient mechanism for managing the restricted resources shared by different applications. resource administration method has to do efficient assignment of resources for virtual machines by ensuring optimal resource exploitation of available physical machines. this paper proposes the application of rough-set model for provisioning of virtual machines. the proposed method uses knowledge-based reduction technique, and it generates the rules to reduce unnecessary attributes of the virtual machines. these rules help virtual machine managers for making effective administration of restricted resources.

Keywords

Cloud computing Data center Physical machine Rough-set model Virtual machine 

References

  1. 1.
    Bhaskar, R., Deepu, S.R., Shylaja, B.S.: Dynamic allocation method for efficient load balancing in virtual machines for cloud computing. Adv. Comput. Int. J. (ACIJ) 3(5), (2012)
  2. 2.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms: Softw.: Pract. Exp. 41(1), 23–50 (2011)
  3. 3.
    Mishra SK, Puthal D, Sahoo B, Jayaraman PP, Jun S, Zomaya AY, Ranjan R.: Energy-efficient VM-placement in cloud data center. Sustain. Comput. Inform. Syst. 20, 48–55 (2018).  
  4. 4.
    Qie, X., Jin, S., Yue, W.: An energy-efficient strategy for virtual machine allocation over cloud data centers. J. Netw. Syst. Manag. 27, 860–882 (2019).  
  5. 5.
    Muthulakshmi1, B., Somasundaram, K.: A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment. Clust. Comput. 22, S10769–S10777 (2019).  
  6. 6.
    Pillai P.S., Rao, S.: Resource allocation in cloud computing using the uncertainity principle of game theory: IEEE Syst. J. (2014)
  7. 7.
    Gao, Z.: The allocation of cloud computing resource based on the improved ant colony algorithm. In: Sixth IEEE International Conference on Intelligent Human Machine System and Cybernetics
  8. 8.
    Wang, Y., Lin, X., Pedram, M.: Game theoritic framework of SLA—based resource allocation for competitive cloud service providers. In: Sixth IEEE Green Technologies Conference (2014)
  9. 9.
    Morshedlou, H., Meybodi, M.R.: Decreasing impact of SLA violations: a proactive resource allocation approach for cloud computing environments. IEEE Trans. Cloud Comput. 2(2) (2014)
  10. 10.
    Liu, J., Zhang, Y., Zhou, Y., Zhang, D., Liu, H.: Aggressive resource provisioning for ensuring QoS in virtualized environments. IEEE Trans. Cloud Comput. 3(2) (2015)
  11. 11.
    Katsalis, K., Paschos, G.S., Viniotis, Y., Tassiulas, L.: CPU provisioning algorithms for service differentiation in cloud—based environments. IEEE Trans. Netw. Serv. Manag. 12(1) (2015)
  12. 12.
    Zdzisław, P.: Rough-set theory and its applications. J. Telecommun. Inf. Technol. (2012)
  13. 13.
    Rissino, S., Lambort-Torres, G.: Rough-set theory-fundamental concepts, principles, data extraction and applications. In: Data Mining and Knowledge Discovery in Real Life Applications, pp. 293–299 (2010)
  14. 14.
    Bhaskar, R., Shylaja, B.S.: Knowledge based reduction for virtual machine provisioning in cloud computing. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 14(7) (2016)
  15. 15.
    Liu, Y., Esseghir, M., Boulahia, L.M.: Cloud service selection based on rough-set theory. IEEE (2015)

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Department of CSEDBITBengaluruIndia
  2. 2.Department of ISEDr. AITBengaluruIndia

Personalised recommendations